Integrated production/transportation planning decisions using possibilistic linear programming

Tien-Fu Liang*

Hung-Wen Cheng

Department of Industrial Engineering and Management
Hsiuping Institute of Technology
11 Gungye Road, Dali City
Taichung
Taiwan 412
R.O.C.

Earl-Juei Wang

Department of Industrial Management
National Pingtung University of Science and Technology
1, Hseuh Fu Road, Neipu Hsiang
Pingtung
Taiwan 900
R.O.C.

Abstract
This study develops an interactive possibilistic linear programming (PLP) method for solving the integrated production/transportation planning decision (PTPD) problem with imprecise objective and constraints in an uncertain environment. The proposed PLP method attempts to minimize the total net costs with reference to available supply, machine capacity, labor level and budget constraints at each source, as well as forecast demand and warehouse space at each destination. A systematic framework that facilitates the fuzzy decision-making process is designed; enabling a decision maker to interactively modify the imprecise data and related parameters until obtain a satisfactory solution. Additionally, an industrial case is used to demonstrate the feasibility of applying the proposed method to real PTPD problems and several significant features of the proposed method that distinguish it from the existing programming methods are presented. On the whole, the proposed PLP method provides greater computational efficiency and more flexible doctrines, and can effectively integrate producer/distributor relationships within a supply chain.

Keywords: Possibilistic linear programming, production/transportation planning decisions, supply chains.

*E-mail: farmer@mail.hit.edu.tw

Journal of Information & Optimization Sciences
Vol. 27 (2), No. 2, pp. 437–457
© Taru Publications 0252-2667/06 $2.00 + 0.25