On the extending of k-regular graphs and their strong defining spectrum

Doost Ali Mojdeh

Department of Mathematics
University of Mazandaran
P. O. Box 47416-1467
Babolsar
Iran

Abstract

In a given graph $G = (V, E)$, a set of vertices S with an assignment of colours to them is said to be a defining set of the vertex colouring of G, if there exists a unique extension of the colours of S to a $c \geq \chi(G)$ colouring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by $d(G, c)$. The defining set S is strong, if there exists an ordering $\{v_1, v_2, \ldots, v_{n-s}\}$ of the vertices of $(G - S)$ such that in the induced list of colours in each of the subgraphs $(G - S)$, $(G - S \cup \{v_1\})$, $(G - S \cup \{v_1, v_2\})$ and $(G - S \cup \{v_1, v_2, \ldots, v_{n-s}\})$, there exist at least one vertex whose list of colours is of cardinality 1. The strong defining number, $sd(G, c)$ of G is the cardinality of its smallest strong defining set.

If \mathcal{F} is a family of graphs then $\text{Spec}_{c}(\mathcal{F}) = \{d \mid \exists G, G \in \mathcal{F}, sd(G, c) = d\}$. Here we study the cases where \mathcal{F} is the family of k-regular (connected and disconnected) graphs on n vertices and $c = k - 1$. Also the $\text{Spec}_{k-1}(\mathcal{F})$ defining spectrum of all k-regular (connected and disconnected) graph on n vertices are verified for $k = 3$ and 4.

Keywords: Regular graphs, colouring, defining spectrum.

1. Introduction

A c-colouring (proper c-colouring) of a graph G is an assignment of c different colours to the vertices of G such that no two adjacent vertices receive the same colour. The vertex chromatic number of a graph G,

*E-mail: dmojdeh@umz.ac.ir

Journal of Discrete Mathematical Sciences & Cryptography
Vol. 9 (2006), No. 1, pp. 73–86
© Taru Publications
denoted by $\chi(G)$, is the minimum number c, for which there exists a c-colouring for G. The maximum degree of the vertices in G is $\Delta(G)$ and the minimum degree is $\delta(G)$ and G is regular if $\delta(G) = \Delta(G)$. It is k-regular graph if the common degree is k (see [12]). In a given graph $G = (V,E)$, a set of vertices S with an assignment of colours to them is said to be a defining set of the vertex colouring of G, if there exists a unique extension of the colours of S to a $c \geq \chi(G)$ colouring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by $d(G,c)$.

The defining set S is strong, if there exists an ordering $\{v_1, v_2, \ldots, v_{n-s}\}$ of the vertices of $\langle G - S \rangle$ such that in the induced list of colours in each of the subgraphs $\langle G - S \rangle$, $\langle G - S \cup \{v_1\} \rangle$, $\langle G - S \cup \{v_1, v_2\} \rangle$ and $\langle G - S \cup \{v_1, v_2, \ldots, v_{n-s}\} \rangle$, there exist at least one vertex whose list of colours is of cardinality 1. The strong defining number, $sd(G,c)$, of G is the cardinality of its smallest strong defining set.

The question of determining defining numbers for graphs and other combinatorial objects has been studied in many papers and under various terminologies, block designs, critical set, defining set, defining spectrum, and forcing of dominating set, (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). There is some even questions as to where the concept first arose.

In this paper we invert the question to ask:

For what d does there exist G so that G has property P and $sd(G,c) = d$ and begins to answer it for some naturally arising properties.

Definition 1.1. If F is a family of graphs, then $\text{Spec}_c(F) = \{d | \exists G, G \in F, sd(G,c) = d\}$.

We shall investigate the Spec_{k-1} for the following families.

1. $F_n^{<k}$: All k-regular connected graphs G on n vertices with $\chi(G) < k$
2. $F_n^{<k}$: All k-regular disconnected graphs G on n vertices with $\chi(G) < k$
3. F_n^c: All k-regular graphs G on n vertices with $\chi(G) < k$

we use the following notation from now on. $\text{Spec}_c'(n) = \text{Spec}_c(F_n^{<k+1})$, $\text{Spec}_c''(n) = \text{Spec}_c(F_n^{c+1})$ and $\text{Spec}_c(n) = \text{Spec}_c(F_n^{<c+1})$.

The following will be useful.

Theorem A ([10]). For any ($k \geq 4$) there exists a k-regular connected graph G on n vertices with $\chi(G) = 3$, so that $d(G,3) = 2$.
2. **k-regular graph**

Extending a given k-regular graph G on n vertices with strong defining number $sd(G)$ to a k-regular graph H on m vertices with strong defining number $sd(H)$ so that $sd(H) \geq sd(G)$ and $m > n$ is important in our discussion.

Theorem 2.1. Let $G \in \mathcal{F}_n^{<k}$, which is coloured with $c = k - 1$ colours, then there is

1. A graph $H \in \mathcal{F}_{n+2k-2}^{<k}$ so that $sd(H, k-1) = k - 2 + sd(G, k-1)$ for $k \geq 5$ and $sd(H, 3) = 1 + sd(G, 3)$ for $k = 4$.

2. A graph $H' \in \mathcal{F}_{n+2k}^{<k}$ so that $sd(H', k-1) = k + sd(G, k-1)$ for $k \geq 5$ and $sd(H', 3) = 3 + sd(G, 3)$ for $k = 4$.

3. A graph $H'' \in \mathcal{F}_{n+2k-2}^{<k}$ so that $sd(H'', k-1) = 2k - 8 + sd(G, k-1)$ for $k \geq 5$ and $sd(H'', 3) = 1 + sd(G, 3)$ for $k = 4$.

Proof. Let S be an strong defining set of size $sd(G, k-1)$ for G. Let u, be the vertex in $G - S$ which is the last vertex being coloured. There are $k - 2$ different colours in the neighborhood of u. And there are at least two vertices in its neighborhood with the same colour. Let u, be one of these vertices. We further assume that the colours are $c(u) = 1$ and $c(v) = 2$.

Now we delete the edge uv.

(1) We add the following graphs to G,

$$
\begin{align*}
&u(1) & v(2) \\
&v_1 & v_2 & v_3 & v_4 \\
&v_5 & v_6 \\
& (k = 4)
\end{align*}
$$
where each of vertices v_1, \ldots, v_k is joined to all of the vertices u_1, \ldots, u_{k-2}. Also v_i is joined to v_{i+1} for $i = 1, 2, \ldots, k - 1$. Moreover v_1 is joined to u and v_k to v. Now for $k \geq 5$ we say S' be the set S with its colours in G together with the vertices $\{u_1, \ldots, u_{k-2}\}$ and colouring $c(u_i) = i$, $2 \leq i \leq k - 2$ and $c(u_1) = 2$ and for $k = 4$, we say S' be the set S with its colours in G together with the vertex u_1 and colouring $c(u_1) = 2$. It can easily be checked in the resulting graph, S' is an strong defining set.

(2) We add the following graph to G,
Theorem 1. Let G be a k-regular graph joined to u and v to v_1. Now for $k \geq 5$ we say S' be the set S with its colours in G together with the vertices $\{u_1, \ldots, u_k\}$ and colouring $c(u_i) = i - 1$, $2 \leq i \leq k - 1$, $c(u_1) = 1$ and $c(u_k) = k - 2$. For $k = 4$, if G is not complete bipartite on 8 vertices we say S' be the set S with its colours in G together with the vertices u_i, $i = 1, 2, 3$ and colouring $c(u_1) = 1$, $c(u_2) = 1$, $c(u_3) = 2$. If $k = 4$ and G is complete bipartite graph on 8 vertices, then in G the vertex v is in defining set, but in the resulting graph the vertex v will not be in S'. It can easily be checked in the resulting graph, S' is an strong defining set.

(3) We add the following graph to G,
where the vertices v_1, \ldots, v_{k-1} are joined together and consist a complete graph K_{k-1}, also the vertices u_1, \ldots, u_{k-1} are joined together and consist a complete graph K_{k-1}. The vertex v_i is joined to u_{i-1} and u_{i+1} for $2 \leq i \leq k-2$. And v_{k-1} is joined to u_{k-2} and u_2, also v_1 is joined to v_{k-1} and v, and u_1 is joined to u.

Now for $k \geq 6$ we say S' be the set S with its colours in G together with the vertices u_i, v_i for $3 \leq i \leq k-3$, u_{k-1}, v_2 and colouring $c(u_i) = c(v_i) = i$, $c(u_{k-1}) = k - 1$ and $c(v_2) = k - 2$. For $k = 5$ we say S' be the set S with its colours in G together with the vertices u_4, v_2 and colouring $c(u_4) = 4, c(v_2) = 3$. For $k = 4$ we say S' be the set S with its colours in G together with the vertex v_3 and colouring $c(v_3) = 3$. □

Theorem 2.2. Let $G \in \mathcal{F}_{n+k}^{c<k}$ which is coloured with $c = k - 1$ colours. Then there is a graph $H \in \mathcal{F}_{n+2k}^{c<k}$ so that $sd(H, k - 1) = k - 2 + sd(G, k - 1)$ for $4 \leq k \leq 7$.

Proof. Using the process of Theorem 2.1, let S be an strong defining set of size $sd(G, k - 1)$ for G. Let u be the vertex in $G - S$ which is the last vertex being coloured. There are $k - 2$ different colours in the neighborhood of u. And there are at least two vertices in its neighborhood with the same colour. Let u_i be one of these vertices. We further assume that the colours are $c(u) = 1$ and $c(v) = 2$. Now we delete the edge uv.

For $4 \leq k \leq 7$ we add the following graphs to G.

![Diagram](image-url)
k-REGULAR GRAPHS

$k = 5$

$k = 6$

$k = 7$
we say \(S' \) be the set \(S \), with its colours in \(G \) together with the vertices \(u_iS \) and colouring \(c(u, i) = i \), where \(1 \leq i \leq k - 2 \).

Let \(G \in \mathcal{F}^{<k}_{n} \) be coloured with \(k - 1 \) colours and \(S \) be an strong defining set of \(G \). It is easily checked that each vertex in \(V(G) \setminus S \) has at most three neighbors and at least two neighbors with same colour. If \(S \) is an strong defining set of \(G \) with minimum cardinality then it is verified that, there exist \(v \in V(G) \setminus S \) with two neighbors \(v_1, v_2 \) and \(u \in V(G) \setminus S \) with one neighbor \(u_1 \) so that the colours of \(v_1, v_2 \) don’t have effect for determining of the colour of \(v \) and the colour of \(u_1 \) doesn’t have effect for determining of the colour of \(u \).

Theorem 2.3. Let \(G \in \mathcal{F}^{<k}_{n} \) be coloured with \(k - 1 \) colours. Then there is a graph \(H \in \mathcal{F}^{<n}_{n + 2k - 4} \) so that \(sd(H, k - 1) = k - 4 + sd(G, k - 1) \).

Proof. Let \(S \) be an strong defining set of \(G \) with minimum cardinality. Let \(u, v \) be two vertices in \(V(G) \setminus S \) as above statements, the deletion of edges \(\{u, u_1\}, \{v, v_1\} \) and \(\{v, v_2\} \) don’t have effect the colours of \(u, v \). The colours of the vertices \(u, v, u_1, v_1 \) and \(v_2 \) will be one of the following forms where in Figure (1) the colours of \(v, u, v_1, v_2 \) and \(u_1 \) are 1, 3, 2, 2 and 2 respectively and etc.

(Maybe, there exist other forms, but they are similarly verified). For Figure (1) we delete \(\{v, v_1\}, \{v, v_2\} \) and \(\{u, u_1\} \) add the vertices \(w_1, w_2, \ldots, w_{k-4} \) with colours 3, 5, \ldots, \(k - 1 \). Add the vertices \(x_1, x_2, \ldots, x_k \) and connect them to all \(w_i \)'s and some \(u_i \)'s, \(v_i \)'s and \(u, v \), as follows. \(x_1 \) connect to all \(w_i \)'s, \(v_1 \) and \(v \) so the colour of \(x_1 \) will be 4. \(x_2 \) connects to all \(w_i \), \(x_1 \) and \(v_2 \), so the colour of \(x_2 \) will be 1. \(x_3 \) connects to all \(w_i \), \(x_2 \) and \(x_1 \) so the colours of \(x_3 \) will be 2. \(x_4 \) connect to all \(w_i \), \(x_3 \) and \(x_2 \) so the colour of \(x_4 \) will be 4. This procedure is continued, finally the vertex \(x_k \) connects to \(w_1 \), \(x_{k-1} \) and \(x_{k-2} \) in this steps the degrees of \(w_i \) and \(x_i \), \(1 \leq i \leq k - 2 \) will be \(k \), the degree of \(x_{k-1}, v, v', v_1 \) are \(k - 1 \) and the degree of \(x_k \) is \(k - 2 \).
If $3 \mid k$, then the colour of x_k is 2 and the colour of x_{k-1} is 1, so we connect x_k to v and u, and x_{k-1} to u_1.

If $3 \mid k - 1$, then the colour of x_k is 4 and x_{k-1} is 2, so we connect x_k to v, u_1 and x_{k-1} to u.

If $3 \mid k - 2$, then the colour of x_k is 1 and x_{k-1} is 4, so we connect x_k to u, u_1 and x_{k-1} to v.

Therefore, the graph H is constructed and $sd(H) = sd(G) + k - 4$.

For Figures (2) and (3) the proofs are similar.\[\Box\]

3. **3 and 4-regular graph**

Here we discuss on strong defining spectrum of 3 and 4 regular graphs.

If $G \in \mathcal{F}_{n}^{<3}$, then G is bipartite and $sd(G) = 1$, so $\text{Spec}_2(\mathcal{F}_{n}^{<3}) = \{1\}$.

If $G \in \mathcal{F}_{n}^{<3}$ then G is disconnected with m component and each component is 3-regular and bipartite so $\text{Spec}_2(\mathcal{F}_{n}^{<3}) = \{m\}$.

If $G \in \mathcal{F}_{n}^{<3}$ then $\text{Spec}_2(\mathcal{F}_{n}^{<3}) \subseteq \{1, 2, \ldots, m\}$, where m is the maximum number of components of G.

Let G be a 4-regular graph and $\chi(G) \leq 3$, by the following figures we have:

$\text{Spec}_3'(6) \supseteq \{2\}$, $\text{Spec}_3'(7) \supseteq \{2\}$, $\text{Spec}_3'(8) \supseteq \{2, 4\}$, $\text{Spec}_3'(9) \supseteq \{2, 3\}$, $\text{Spec}_3'(10) \supseteq \{2, 3\}$, $\text{Spec}_3'(11) \supseteq \{2, 3\}$, $\text{Spec}_3'(12) \supseteq \{2, 3, 4\}$.
Now we extend the above result for $n > 12$.
Theorem 3.1. For \(n > 12 \),
\[
\text{Spec}_3'(n) \supseteq \begin{cases}
\{2, 3, \ldots, \left\lfloor \frac{n}{4} \right\rfloor \} & \text{if } 8 \nmid n \text{ or } 8 \nmid n - 6 \text{ or } 8 \nmid n - 7, \\
\left\lfloor \frac{n}{4} \right\rfloor + 1 & \text{otherwise.}
\end{cases}
\]

Proof. For \(n = 13 \), consider the graph

![Graph Image]

and the relation \(\text{Spec}_3'(13) \supseteq \{2\} \cup \text{Spec}_3'(7) + \{1\} \), so \(\text{Spec}_3'(13) \supseteq \{2, 3, 4\} \).

By the Theorem 2.1 for 4-regular bipartite graph on 8 vertices and using Theorem A and above for \(n = 16 \) we have \(\text{Spec}_3'(16) \supseteq \{2\} \cup \text{Spec}_3'(10) + \{1\} \cup (\text{Spec}_3'(8) \setminus \{4\}) + \{2, 3\} \cup \{6\} = \{2, 3, 4, 5, 6\} \). Now if we use the induction, Theorem A, the theorems of Section 2 and the relation \(\text{Spec}_3'(n) \supseteq \text{Spec}_3'(n - 6) + \{1\} \cup \text{Spec}(n - 8) + \{2, 3\} \cup \{2\} \), for \(n \geq 14 \) and \(n \neq 16 \), the result will be proved.

Let \(G \) be a disconnected 4-regular graph with \(n \) vertices and \(\chi(G) \leq 3 \) then \(n \) should be at least 12. The following is an extension of the before result for disconnected graph.

Theorem 3.2. For \(n \geq 12 \),
\[
\text{Spec}_3''(n) \supseteq \begin{cases}
\left\{4, \ldots, \left\lfloor \frac{n}{4} \right\rfloor + 2 \left\lfloor \frac{n}{8} \right\rfloor - 1\right\} & \text{if } 8 \nmid n, 8 \nmid n - 6, 8 \nmid n - 7, \\
\{4, 2, \frac{n}{4}\} & \text{if } 8 \nmid n - 6, 8 \nmid n - 7, \\
\left\{4, 2, \frac{n}{4} - 2, 2 \left\lfloor \frac{n}{4} \right\rfloor + 1\right\} & \text{if } 8 \mid n.
\end{cases}
\]
k-REGULAR GRAPHS

Proof. Since $G \in \mathcal{F}_n^{<4}$, then G consists of at least two components. Now using induction and Theorem 3.2.

The following is an extension of Theorem 3.2 for any 4-regular graph with $\chi(G) \leq 3$.

Corollary 3.3. For $n \geq 6$,

$$\text{Spec}_3(n) \supseteq \begin{cases} \{2,3,\ldots, \left\lceil \frac{n}{4} \right\rceil + 2, \left\lfloor \frac{n}{8} \right\rfloor - 1 \} & \text{if } 8 \nmid n, 8 \nmid n - 6, 8 \nmid n - 7 \\ \{2,3,\ldots,2 \left\lfloor \frac{n}{4} \right\rfloor \} & \text{if } 8 \mid n - 6, 8 \nmid n - 7 \\ \{2,\ldots,2 \left\lfloor \frac{n}{4} \right\rfloor - 2,2 \left\lfloor \frac{n}{4} \right\rfloor + 1 \} & \text{if } 8 \mid n. \end{cases}$$

Proof. If $G \in \mathcal{F}_n^{<4}$ then G is connected or disconnected 4-regular graph. Now we combine the results of Theorems 3.1 and 3.2.

As an immediately result we have:

Corollary 3.4. The minimum of $\text{Spec}_3'(n) = 2 = \text{the minimum of } \text{Spec}_3(n)$ and the minimum of $\text{Spec}_3''(n) = 4$.

References

Received November, 2004